| Project Number: Design Qualification Test Report | Tracking Code: 1658301_Report_Rev_3 | |----------------------------------------------------------|-------------------------------------| | Requested by: Jonathan Ochsner | Date: 9/24/2020 | | Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT | Tech: Peter Chen | | Part description: UMPS / UMPT | Qty to test: 80 | | Test Start: 07/25/2018 | Test Completed: 09/02/2018 | # DESIGN QUALIFICATION TEST REPORT $\frac{\text{UMPS} \ / \ \text{UMPT}}{\text{UMPS-05-03.5-T-VT-SM-WT} \ / \ \text{UMPT-05-01.5-T-VT-SM-WT}}$ | Tracking Code: 1658301_Report_Rev_2 | Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT | |-------------------------------------|----------------------------------------------------------| | Part de | escription: UMPS / UMPT | # **REVISION HISTORY** | DATA | REV.NUM. | DESCRIPTION | ENG | |------------|----------|---------------------------------------------------|-----| | 09/02/2018 | 1 | Initial Issue | PC | | 2/19/2019 | 2 | Add the Lube samples CCC and mating force data | PC | | 3/15/2019 | 3 | Remove the Lube samples CCC and mating force data | PC | | Tracking Code: 1658301 Report Rev 2 | Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT | |-------------------------------------|----------------------------------------------------------| | | | #### CERTIFICATION All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable. All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec. #### **SCOPE** To perform the following tests: Design Qualification test. Please see test plan. #### APPLICABLE DOCUMENTS Standards: EIA Publication 364 #### TEST SAMPLES AND PREPARATION - 1) All materials were manufactured in accordance with the applicable product specification. - 2) All test samples were identified and encoded to maintain traceability throughout the test sequences. - 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001. - 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used. - 5) The automated procedure is used with aqueous compatible soldering materials. - 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary. - 7) Any additional preparation will be noted in the individual test sequences. - 8) Solder Information: Lead free - 9) Samtec Test PCBs used: PCB-108953-TST. PCB-108951-TST. #### **FLOWCHARTS** # **Gas Tight** Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 8 Assemblies #### Step Description - 1. LLCR (2) - 2. Gas Tight (1) - LLCR (2) Max Delta = 15 mOhm - (1) Gas Tight = EIA-364-36 - (2) LLCR = EIA-364-23 Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max # **Normal Force** #### Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 8 Contacts Minimum Signal Without Thermals ### Step Description - Contact Gaps - Normal Force (1) Deflection = 0.006 " Expected Force at Max Deflection = 150 g (1) Normal Force = EIA-364-04 ### **FLOWCHARTS Continued** # **Thermal Aging** Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 8 Assemblies ## Step Description - 1. Contact Gaps - 2. Mating/Unmating Force (2) - 3. LLCR (1) - 4. Thermal Age (3) - 5. LLCR (1) Max Delta = 15 mOhm - 6. Mating/Unmating Force (2) - 7. Contact Gaps . . . (1) LLCR = EIA-364-23 Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max - (2) Mating/Unmating Force = EIA-364-13 - (3) Thermal Age = EIA-364-17 Test Condition = 4 (105°C) Time Condition = B (250 Hours) Part description: UMPS / UMPT #### **FLOWCHARTS Continued** Group 2 UMPS-02-03.5-T-VT-SM-WT UMPT-02-01.5-T-VT-SM-WT 8 Assemblies # Mating/Unmating/Durability #### Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 8 Assemblies - Step Description 1. Contact Gaps - 2. Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - 4. Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - 10. Mating/Unmating Force (3) # Step Description - 1. Contact Gaps - 2. LLCR (2) - 3. Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - 5. Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - 7. Mating/Unmating Force (3) - Cycles Quantity = 25 Cycles - 9. Mating/Unmating Force (3) - 10. Cycles Quantity = 25 Cycles - 11. Mating/Unmating Force (3) - Contact Gaps - 13. LLCR (2) Max Delta = 15 mOhm - 14. Thermal Shock (4) - 15. LLCR (2) Max Delta = - Max Delta = 15 mOhm - 16. Humidity (1) - LLCR (2) Max Delta = 15 mOhm - 18. Mating/Unmating Force (3) (1) Humidity = EIA-364-31 Test Condition = B (240 Hours) Test Method = III (+25°C to +65°C @ 90% RH to 98% RH) Test Exceptions: ambient pre-condition and delete steps 7a and 7b (2) LLCR = EIA-364-23 Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max - (3) Mating/Unmating Force = EIA-364-13 - (4) Thermal Shock = EIA-364-32 Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C) Test Duration = A-3 (100 Cycles) #### **FLOWCHARTS Continued** ### IR/DWV #### Pin-to-Pin Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 2 Assemblies Step Description 1. DWV Breakdown (2) Group 2 UMPS-05-03.5-T-VT-SM-WT 2 Assemblies Description DWV Breakdown (2) Step Group 3 UMPT-05-01.5-T-VT-SM-WT 2 Assemblies Group 7 UMPT-05-01.5-T-VT-SM-WT Step Description DWV Breakdown (2) Group 4 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 2 Assemblies Epote Active to Step Description 1. IR (4) DWV at Test Voltage (1) Thermal Shock (5) 4. IR (4) 5. DWV at Test Voltage (1) 6. Humidity (3) 7. IR (4) 8. DWV at Test Voltage (1) #### Pin-to-Closest Metallic Hardware Group 5 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 2 Assemblies Description DWV Breakdown (2) Group 6 UMPS-05-03.5-T-VT-SM-WT 2 Assemblies Step Description 1. DWV Breakdown (2) 2 Assemblies Step Description DWV Breakdown (2) Group 8 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 2 Assemblies Step Description 1. IR (4) 2. DWV at Test Voltage (1) 3. Thermal Shock (5) 4. IR (4) DWV at Test Voltage (1) 6. Humidity (3) 7. IR 8. DWV at Test Voltage (1) (1) DWV at Test Voltage = EIA-364-20 Test Condition = 1 (Sea Level) DWV test voltage is equal to 75% of the lowest breakdown voltage Test voltage applied for 60 seconds (2) DWV Breakdown = EIA-364-20 Test Condition = 1 (Sea Level) DWV test voltage is equal to 75% of the lowest breakdown voltage Test voltage applied for 60 seconds (3) Humidity = EIA-364-31 Test Condition = B (240 Hours) Test Method = III (+25°C to +65°C @ 90% RH to 98% RH) Test Exceptions: ambient pre-condition and delete steps 7a and 7b (4) IR = EIA-364-21 Test Condition = 500 Vdc, 2 Minutes Max (5) Thermal Shock = EIA-364-32 Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C) Test Duration = A-3 (100 Cycles) # **FLOWCHARTS Continued** # **Current Carrying Capacity** Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 1 Pins Powered Power Step Description CCC (1) Rougs ■ 1 Rows = 1 Number of Positions = 1 Group 2 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 2 Pins Powered Power Step Description CCC (1) Rows ■ 1 Number of Positions = 2 Group 3 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 3 Pins Powered Power Step Description CCC (1) Rows ■ 1 Number of Positions = 3 Group 4 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 4 Pins Powered Power Step Description CCC (1) Rows ■ 1 Number of Positions = 4 Group 5 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 5 Pins Powered Power ----- Step Description CCC (1) Rows ■ 1 Number of Positions = 5 (1) CCC = EIA-364-70 Method 2, Temperature Rise Versus Current Curve (TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C Part description: UMPS / UMPT #### **FLOWCHARTS Continued** # Mechanical Shock/Random Vibration/LLCR Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 8 Assemblies #### Step Description - LLCR (1) - Mechanical Shock (2) - Random Vibration (3) - LLCR (1) Max Delta 15 mOhm (1) LLCR = EIA-364-23 Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max (2) Mechanical Shock = EIA-364-27 Test Condition = C (100 G Peak, 6 milliseconds, Half Sine) Number of Shocks = 3 Per Direction, Per Axis, 18 Total (3) Random Vibration = EIA-364-28 Condition = VB (7.56 gRMS Average, 2 Hours/Axis) # Mechanical Shock/Random Vibration/Event Detection Group 1 UMPS-05-03.5-T-VT-SM-WT UMPT-05-01.5-T-VT-SM-WT 60 Points #### Step Description - Nanosecond Event Detection (Mechanical Shock) (1) - Nanosecond Event Detection (Random Vibration) (2) (1) Nanosecond Event Detection (Mechanical Shock) Use EIA-364-87 for Nanosecond Event Detection: Test Condition = F (50 nanoseconds at 10 ohms) Use EIA-364-27 for Mechanical Shock: Test Condition = C (100 G Peak, 6 milliseconds, Half Sine) Number of Shocks = 3 Per Direction, Per Axis, 18 Total (2) Nanosecond Event Detection (Random Vibration) Use EIA-364-87 for Nanosecond Event Detection: Test Condition = F (50 nanoseconds at 10 ohms) Use EIA-364-28 for Random Vibration: Condition = VB (7.56 gRMS Average, 2 Hours/Axis) Part description: UMPS / UMPT #### ATTRIBUTE DEFINITIONS The following is a brief, simplified description of attributes. #### THERMAL SHOCK: - 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors. - 2) Test Condition 1: -55° C to $+85^{\circ}$ C - 3) Test Time: ½ hour dwell at each temperature extreme - 4) Number of Cycles: 100 - 5) All test samples are pre-conditioned at ambient. - 6) All test samples are exposed to environmental stressing in the mated condition. #### **THERMAL:** - 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors. - 2) Test Condition 4 at 105° C - 3) Test Time Condition B for 250 hours. - 4) All test samples are pre-conditioned at ambient. - 5) All test samples are exposed to environmental stressing in the mated condition. #### **HUMIDITY:** - 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors. - 2) Test Condition B, 240 Hours. - 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b. - 4) All samples are pre-conditioned at ambient. - 5) All test samples are exposed to environmental stressing in the mated condition. ### **MECHANICAL SHOCK (Specified Pulse):** - 1) Reference document: EIA-364-27, Mechanical Shock Test Procedure for Electrical Connectors - 2) Test Condition C - 3) Peak Value: 100 G - 4) Duration: 6 Milliseconds - 5) Wave Form: Half Sine - 6) Velocity: 12.3 ft/s - 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total) #### **VIBRATION:** - 1) Reference document: EIA-364-28, Vibration Test Procedure for Electrical Connectors - 2) Test Condition V, Letter B - 3) Power Spectral Density: 0.04 G² / Hz - 4) G'RMS': 7.56 - 5) Frequency: 50 to 2000 Hz - 6) Duration: 2.0 Hours per axis (3 axis total) #### NANOSECOND-EVENT DETECTION: - 1) Reference document: EIA-364-87, Nanosecond-Event Detection for Electrical Connectors - 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector. - 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events #### **MATING/UNMATING:** - 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors. - 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test. - 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling. Part description: UMPS / UMPT ### **ATTRIBUTE DEFINITIONS Continued** The following is a brief, simplified description of attributes. # **TEMPERATURE RISE (Current Carrying Capacity, CCC):** - 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets. - 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating. - 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise. - 4) The size of the temperature probe can affect the measured temperature. - 5) Copper traces on PC boards will contribute to temperature rise: - a. Self heating (resistive) - b. Reduction in heat sink capacity affecting the heated contacts - 6) A de-rating curve, usually 20%, is calculated. - 7) Calculated de-rated currents at four temperature points are reported: - a. Ambient - b. 65° C - c. 75° C - d. 95° C - 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized. - 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area. - 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition. - 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc. - 12) Hook-up wire length is longer than the minimum specified in the referencing standard. #### LLCR: - 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing - a. <= +0.33 mOhms: -----Stable b. +0.33 to +0.66 mOhms: ------Minor c. +0.67 to +1.00 mOhms: ------Acceptable - d. +1.01 to +50.0 mOhms: ------Marginal - e. +50.1 to +1000 mOhms: ------Unstable - f. >+1000 mOhms:-----Open Failure ### **ATTRIBUTE DEFINITIONS Continued** The following is a brief, simplified description of attributes. #### **GAS TIGHT:** To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system. - 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing - a. <= +0.33 mOhms: -----Stable - b. +0.33 to +0.66 mOhms: ------Minor - c. +0.67 to +1.00 mOhms: ------Acceptable - d. +1.01 to +50.0 mOhms: ------Marginal - e. +50.1 to +1000 mOhms: ------Unstable - f. >+1000 mOhms:-----Open Failure - 4) Procedure: - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*. - b. Test Conditions: - i. Class II--- Mated pairs of contacts assembled to their plastic housings. - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1. - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added. - v. Exposure time, 55 to 65 minutes. - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches. - vii. The samples shall be dried after exposure for a minimum of 1 hour. - viii. Drying temperature 50° C - ix. The final LLCR shall be conducted within 1 hour after drying. #### **ATTRIBUTE DEFINITIONS Continued** The following is a brief, simplified description of attributes. #### NORMAL FORCE (FOR CONTACTS TESTED OUTSIDE THE HOUSING): - 1) Reference document: EIA-364-04, Normal Force Test Procedure for Electrical Connectors. - 2) The contacts shall be tested in the loose state, *not* inserted in connector housing. - 3) The contacts shall be prepared to allow access to the spring member at the same attitude and deflection level as would occur in actual use. - 4) In the event that portions of the contact prevent insertion of the test probe and/or deflection of the spring member under evaluation, said material shall be removed leaving the appropriate contact surfaces exposed. - 5) In the case of multi-tine contacts, each tine shall be tested independently on separate samples as required. - 6) The connector housing shall be simulated, if required, in order to provide an accurate representation of the actual contact system performance. - 7) A holding fixture shall be fashioned to allow the contact to be properly deflected. - 8) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5 µm (0.0002"). - 9) The probe shall be attached to a Dillon P/N 49761-0105, 5 N (1.1 Lb) load cell providing an accuracy of \pm 0.2%. - 10) The nominal deflection rate shall be 5 mm (0.2")/minute. - 11) Unless otherwise noted a minimum of five contacts shall be tested. - 12) The force/deflection characteristic to load and unload each contact shall be repeated five times. - 13) The system shall utilize the TC² software in order to acquire and record the test data. - 14) The permanent set of each contact shall be measured within the TC² software. - 15) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork. # **INSULATION RESISTANCE (IR):** To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied. - 1) PROCEDURE: - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors. - b. Test Conditions: - i. Between Adjacent Contacts or Signal-to-Ground - ii. Electrification Time 2.0 minutes - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances. - 2) MEASUREMENTS: - 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms. Part description: UMPS / UMPT #### ATTRIBUTE DEFINITIONS Continued The following is a brief, simplified description of attributes ### **DIELECTRIC WITHSTANDING VOLTAGE (DWV):** To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process. - 1) PROCEDURE: - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors. - b. Test Conditions: - i. Between Adjacent Contacts or Signal-to-Ground - ii. Barometric Test Condition 1 - iii. Rate of Application 500 V/Sec - iv. Test Voltage (VAC) until breakdown occurs - 2) MEASUREMENTS/CALCULATIONS - a. The breakdown voltage shall be measured and recorded. - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage. - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage). Tracking Code: 1658301_Report_Rev_2 Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT Part description: UMPS / UMPT #### **RESULTS** #### Temperature Rise, CCC at a 20% de-rating #### Without Lube - CCC for a 30°C Temperature Rise-----18.3 A per contact with 1 contacts (1x1) powered - CCC for a 30°C Temperature Rise------14.5 A per contact with 2 contacts (1x2) powered - CCC for a 30°C Temperature Rise-----14.2 A per contact with 3 contacts (1x3) powered - CCC for a 30°C Temperature Rise-----12.9 A per contact with 4 contacts (1x4) powered - CCC for a 30°C Temperature Rise------12.9 A per contact with 5 contacts (1x5) powered ### **Mating – Unmating Forces** #### **Thermal Aging Group** - Initial - Mating - Min -----11.68 Lbs - Max-----14.69 Lbs - o **Unmating** - Min ------12.01 Lbs - Max-----14.15 Lbs - After Thermal - Mating - Min -----7.37 Lbs - Max-----9.58 Lbs - o Unmating - Min -----7.77 Lbs - Max-----9.73 Lbs # **RESULTS Continued** | | | | RESULTS Continu | |----------|---------|----------------|--------------------| | Mating_I | Inmati | na Dural | bility Group | | _ | nitial | ing Durai | mity Group | | • 1 | O | Mating | | | | O | • | Min11.25 Lbs | | | | | Max15.92 Lbs | | | 0 | Unmati | ng | | | | • | Min12.20 Lbs | | | | • | Max15.30 Lbs | | • A | After 2 | 5 Cycles | | | | 0 | Mating | | | | | • | Min13.73 Lbs | | | | T I 4. | Max17.67 Lbs | | | 0 | Unmati
• | mg
Min11.34 Lbs | | | | - | Max12.31 Lbs | | • 4 | \fter 5 | 0 Cycles | WIAX12.31 LUS | | • 1 | 0 | Mating Marking | | | | Ü | • | Min12.85 Lbs | | | | | Max17.20 Lbs | | | 0 | Unmati | | | | | • | Min10.71 Lbs | | | | • | Max12.55 Lbs | | • A | After 7 | 5 Cycles | | | | 0 | Mating | | | | | • | Min9.89 Lbs | | | | T] 4: | Max14.51 Lbs | | | 0 | Unmati | Min 7.65 Lbs | | | | - | Max11.43 Lbs | | • 4 | After 1 | 00 Cycles | | | | 0 | Mating | | | | | • | Min 9.89 Lbs | | | | • | Max13.70 Lbs | | | 0 | Unmati | | | | | • | Min 6.74 Lbs | | | | • | Max9.31 Lbs | | • | Humi | · . | | | | 0 | Mating | 7.04.7.1 | | | | - | Min 3.01 Lbs | | | _ | I Inma# | Max 3.66 Lbs | | | 0 | Unmati | Min 2.80 Lbs | | | | - | Max3.97 Lbs | | | | _ | 3.77 LUS | #### **RESULTS Continued** Mating-Unmating Basic (UMPS-02-03.5-T-VT-SM-WT/ UMPT-02-01.5-T-VT-SM-WT) Initial Mating 0 Min ----- 4.53 Lbs Max----- 5.34 Lbs Unmating Min ------ 4.00 Lbs Max------4.78 Lbs After 25 Cycles Mating Min ----- 6.20 Lbs Max-----7.87 Lbs Unmating Min ------ 4.48 Lbs Max----- 5.69 Lbs After 50 Cycles Mating Min ----- 6.62 Lbs Max-----7.83 Lbs Unmating Min ----- 4.44 Lbs Max----- 5.42 Lbs After 75 Cycles Mating Min ----- 4.96 Lbs Max----- 6.79 Lbs Unmating Min ----- 3.95 Lbs Max------4.80 Lbs After 100 Cycles **Mating** Min ------ 4.36 Lbs ### Normal Force at 0.14-mm deflection Unmating | • | Initial | | | |---|---------|---------------|---------------| | | 0 | Min 387.20 gf | Set 0.0251 mm | | | 0 | Max 473.30 gf | Set 0.0501 mm | | • | After T | Thermal | | | | 0 | Min 275.00 gf | Set 0.0000 mm | | | 0 | Max 407.00 gf | Set 0.0000 mm | Max----- 6.20 Lbs Min ----- 2.98 Lbs Max----- 3.97 Lbs Part description: UMPS / UMPT # **RESULTS Continued** | | RESULTS Continued | | | | | | |-------|---------------------------------------|---------------------|-------|--|--|--| | sulat | tion Resistance minimums, IR | | | | | | | | to Pin | | | | | | | • | Initial | | | | | | | | o Mated | 450000 Meg Ω | Passe | | | | | | | 450000 Meg Ω | | | | | | • | Thermal Shock | G | | | | | | | Mated | 450000 Meg Ω | Passo | | | | | | Unmated | 450000 Meg Ω | Passo | | | | | • | Humidity | | | | | | | | Mated | 450000 Meg Ω | Passe | | | | | | Unmated | 450000 Meg Ω | Passe | | | | | Pin | to Closest Metallic Hardware | | | | | | | • | Initial | | | | | | | | | 450000 Meg Ω | Pass | | | | | | | 450000 Meg Ω | | | | | | • | Thermal Shock | | | | | | | | | 450000 Meg Ω | Passo | | | | | | Unmated | 450000 Meg Ω | Passe | | | | | • | Humidity | | | | | | | | | 450000 Meg Ω | | | | | | | Unmated | 450000 Meg Ω | Passo | | | | | | | | | | | | | elect | ric Withstanding Voltage minimums | , DWV | | | | | | • | Minimums | | | | | | | | Breakdown Voltage | | | | | | | | o Test Voltage | | | | | | | | Working Voltage | 460 VAC | | | | | | Pin | to Pin | | | | | | | • | Initial DWV | Passed | | | | | | • | Thermal DWV | | | | | | | • | Humidity DWV | | | | | | | D. | · | | | | | | | | to Closest Metallic Hardware | D 1 | | | | | | • | Initial DWV | | | | | | | • | Thermal DWV | | | | | | | • | | Doggod | | | | | Part description: UMPS / UMPT # RESULTS Continued | | RES | SULTS Continued | | |-----------|--|------------------------|--------------| | LLCR The | rmal Aging Group (40 LLCR test | points) | | | | | - | | | • Therm | | 0100 1110 11110 112412 | | | 0 | <= +0.33 mOhms | 40 Points | Stable | | 0 | +0.34 to +0.66 mOhms | 0 Points | Minor | | 0 | +0.67 to +1.00 mOhms | 0 Points | Acceptable | | 0 | +1.01 to +50.0 mOhms | 0 Points | Marginal | | 0 | +50.1 to +1000 mOhms | 0 Points | Unstable | | 0 | >+1000 mOhms | 0 Points | Open Failure | | LLCD Mot | ing/Ilumating Dunchility Cuann (| 40 I I CD tost points) | | | | ing/Unmating Durability Group (| - | | | | | 0.84 mOhms Max | | | | ility, 100 Cycles | 40 D-1-4- | C4-1-1- | | 0 | <= +0.33 mOhms
+0.34 to +0.66 mOhms | | | | 0 | +0.67 to +1.00 mOhms | | | | 0 | | | | | 0 | +1.01 to +50.0 mOhms | | U | | 0 | +50.1 to +1000 mOhms>+1000 mOhms | | | | 0 | | Points | Open Fallure | | | al Shock | 26 D : 4 | G4 11 | | 0 | <= +0.33 mOhms | | | | 0 | +0.34 to +0.66 mOhms | | | | 0 | +0.67 to +1.00 mOhms | | - | | 0 | +1.01 to +50.0 mOhms | | O | | 0 | +50.1 to +1000 mOhms | | | | 0 | >+1000 mOhms | Points | Open Failure | | • Humid | · | 0.5 - 1 | a | | 0 | <= +0.33 mOhms | | | | 0 | +0.34 to +0.66 mOhms | | | | 0 | +0.67 to +1.00 mOhms | | - | | 0 | +1.01 to +50.0 mOhms | | | | 0 | +50.1 to +1000 mOhms | | | | 0 | >+1000 mOhms | 0 Points | Open Failure | | II CD Coc | Tight Group (40 LLCR test point | (a | | | | | | | | | | | | | • Gas-Ti | gnt
<= +0.33 mOhms | 20 D. t. 4 | C4-1-1- | | 0 | | | | | 0 | +0.34 to +0.66 mOhms
+0.67 to +1.00 mOhms | | | | 0 | +1.01 to +50.0 mOhms | | | | 0 | +50.1 to +1000 mOhms | | | | 0 | >+1000 mOhms> | | | | 0 | >+1000 IIIOIIIIIS | v romis | Open ranure | Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT # **RESULTS Continued** ## LLCR Shock & Vibration Group (40 LLCR test points) • Initial ------0.89 mOhms Max #### • Shock &Vibration | | a i ioi ution | | | |---|----------------------|-----------|--------------| | 0 | <= +0.33 mOhms | 40 Points | Stable | | 0 | +0.34 to +0.66 mOhms | 0 Points | Minor | | 0 | +0.67 to +1.00 mOhms | 0 Points | Acceptable | | 0 | +1.01 to +50.0 mOhms | 0 Points | Marginal | | 0 | +50.1 to +1000 mOhms | 0 Points | Unstable | | 0 | >+1000 mOhms | 0 Points | Open Failure | #### **Mechanical Shock & Random Vibration:** | \circ | Sho | ck | |---------|-----|---------------| | \circ | OHO | \mathbf{cn} | - Vibration - No Damage------Pass - 50 Nanoseconds------ Pass Part description: UMPS / UMPT #### **DATA SUMMARIES** # **TEMPERATURE RISE (Current Carrying Capacity, CCC):** - 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring. - 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing. - 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition). - 4) Adjacent contacts were powered: #### Without Lube a. Linear configuration with 1 adjacent conductors/contacts powered # **DATA SUMMARIES Continued** b. Linear configuration with 2 adjacent conductors/contacts powered 1658301 2(1x2) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT 1658301 2(1x2) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT # **DATA SUMMARIES Continued** c. Linear configuration with 3 adjacent conductors/contacts powered 1658301 3(1x3) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT 1658301 3(1x3) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT # **DATA SUMMARIES Continued** d. Linear configuration with 4 adjacent conductors/contacts powered Tracking Code: 1658301_Report_Rev_2 1658301 4(1x4) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT 4(1x4) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT # **DATA SUMMARIES Continued** e. Linear configuration with all adjacent conductors/contacts powered 1658301 All(1x5) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT 1658301 All(1x5) Signal Pins Powered in Series Part Numbers: UMPS-05-03.5-T-VT-SM-WT/UMPT-05-01.5-T-VT-SM-WT # **DATA SUMMARIES Continued** # MATING-UNMATING FORCE: Thermal Aging Group | | | Initial | | | | After Thermals | | | | |---------|---------------------|---------|----------|-------------|---------|----------------|----------|-------------|--| | | Mating | | Unmating | | Mating | | Unmating | | | | | Newtons Force (Lbs) | | Newtons | Force (Lbs) | Newtons | Force (Lbs) | Newtons | Force (Lbs) | | | Minimum | 51.95 | 11.68 | 53.42 | 12.01 | 32.78 | 7.37 | 34.57 | 7.77 | | | Maximum | 65.34 | 14.69 | 62.94 | 14.15 | 42.62 | 9.58 | 43.26 | 9.73 | | | Average | 58.11 | 13.07 | 57.90 | 13.02 | 39.18 | 8.81 | 40.72 | 9.15 | | | St Dev | 4.38 | 0.99 | 3.43 | 0.77 | 3.05 | 0.69 | 2.76 | 0.62 | | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | Mating-U | nmating Dur | ability Group |) | | | | | | |----------|----------------|---------------|----------|-------------|-----------------|-------------|----------|-------------| | | Initial | | | | After 25 Cycles | | | | | | Mat | ing | Unm | ating | Mat | ing | Unmating | | | | New tons | Force (Lbs) | | Minimum | 50.04 | 11.25 | 54.27 | 12.20 | 61.07 | 13.73 | 50.44 | 11.34 | | Maximum | 70.81 | 15.92 | 68.05 | 15.30 | 78.60 | 17.67 | 54.75 | 12.31 | | Average | 57.52 | 12.93 | 59.18 | 13.31 | 70.16 | 15.77 | 52.62 | 11.83 | | St Dev | 6.53 | 1.47 | 5.04 | 1.13 | 5.91 | 1.33 | 1.54 | 0.35 | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | After 50 Cycle | | | | | After 75 | Cycles | | | | Mating | | Unmating | | Mat | ing | Unm | ating | | | New tons | Force (Lbs) | | Minimum | 57.16 | 12.85 | 47.64 | 10.71 | 43.99 | 9.89 | 34.03 | 7.65 | | Maximum | 76.51 | 17.20 | 55.82 | 12.55 | 64.54 | 14.51 | 50.84 | 11.43 | | Average | 64.31 | 14.46 | 50.45 | 11.34 | 55.76 | 12.54 | 40.79 | 9.17 | | St Dev | 6.46 | 1.45 | 2.60 | 0.59 | 8.22 | 1.85 | 6.27 | 1.41 | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | After 100 | O Cycles | | After Humidity | | | | | | Mat | ing | Unm | ating | Mating | | Unmating | | | | New tons | Force (Lbs) | | Minimum | 43.99 | 9.89 | 29.98 | 6.74 | 13.39 | 3.01 | 12.45 | 2.80 | | Maximum | 60.94 | 13.70 | 41.41 | 9.31 | 16.28 | 3.66 | 17.66 | 3.97 | | Average | 51.88 | 11.66 | 35.47 | 7.97 | 14.93 | 3.36 | 13.64 | 3.07 | | St Dev | 6.11 | 1.37 | 4.05 | 0.91 | 0.92 | 0.21 | 1.67 | 0.37 | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | Part description: UMPS / UMPT # **DATA SUMMARIES Continued** # Mating-Unmating basic (UMPS-02-03.5-T-VT-SM-WT/UMPT-02-01.5-T-VT-SM-WT) | | Initial | | | | After 25 Cycles | | | | | |---------|----------|-------------|----------|-------------|-----------------|-------------|----------|-------------|--| | | Mat | ing | Unmating | | Mat | ing | Unm | ating | | | | New tons | Force (Lbs) | | | Minimum | 20.15 | 4.53 | 17.79 | 4.00 | 27.58 | 6.20 | 19.93 | 4.48 | | | Maximum | 23.75 | 5.34 | 21.26 | 4.78 | 35.01 | 7.87 | 25.31 | 5.69 | | | Average | 21.47 | 4.83 | 19.74 | 4.44 | 30.84 | 6.93 | 22.66 | 5.09 | | | St Dev | 1.33 | 0.30 | 1.22 | 0.27 | 2.34 | 0.53 | 1.86 | 0.42 | | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | | After 50 | Cycles | | | After 75 | Cycles | | | | | Mat | ing | Unmating | | Mating | | Unm | ating | | | | New tons | Force (Lbs) | | | Minimum | 29.45 | 6.62 | 19.75 | 4.44 | 22.06 | 4.96 | 17.57 | 3.95 | | | Maximum | 34.83 | 7.83 | 24.11 | 5.42 | 30.20 | 6.79 | 21.35 | 4.80 | | | Average | 31.95 | 7.18 | 22.05 | 4.96 | 26.33 | 5.92 | 19.85 | 4.46 | | | St Dev | 2.12 | 0.48 | 1.52 | 0.34 | 2.83 | 0.64 | 1.35 | 0.30 | | | Count | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | | | After 100 |) Cycles | | | | | | | | | Mat | ing | Unm | ating | | | | | | | | New tons | Force (Lbs) | New tons | Force (Lbs) | | | | | | | Minimum | 19.39 | 4.36 | 13.26 | 2.98 | | | | | | | Maximum | 27.58 | 6.20 | 17.66 | 3.97 | | | | | | | Average | 24.36 | 5.48 | 15.90 | 3.58 | | | | | | | St Dev | 2.49 | 0.56 | 1.76 | 0.40 | | | | | | | Count | 8 | 8 | 8 | 8 | | | | | | ### **DATA SUMMARIES Continued** # NORMAL FORCE (FOR CONTACTS TESTED OUT THE HOUSING): - 1) Calibrated force gauges are used along with computer controlled positioning equipment. - 2) For Normal force 8-10 measurements are taken and the averages reported. | | | Deflections in mm Forces in Grams | | | | | | | | | | |----------|--------|-----------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------| | Initial | 0.0140 | 0.0280 | 0.0420 | 0.0560 | 0.0700 | 0.0840 | 0.0980 | 0.1120 | 0.1260 | 0.1400 | SET | | Averages | 50.35 | 104.38 | 153.32 | 197.77 | 242.14 | 281.34 | 319.23 | 354.81 | 385.53 | 412.75 | 0.0383 | | Min | 31.70 | 84.90 | 136.60 | 184.40 | 222.90 | 265.40 | 299.30 | 334.10 | 360.60 | 387.20 | 0.0251 | | Max | 60.30 | 121.30 | 164.20 | 216.60 | 272.30 | 329.90 | 378.00 | 426.10 | 453.90 | 473.30 | 0.0501 | | St. Dev | 9.400 | 9.937 | 7.826 | 9.367 | 12.181 | 16.919 | 20.034 | 23.510 | 23.430 | 21.286 | 0.0058 | | Count | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | | After
Thermals | | Deflections in mm Forces in Grams | | | | | | | | | | |-------------------|---------------|-----------------------------------|--------|--------|---------------|--------|--------|---------------|---------------|---------------|--------| | | <u>0.0140</u> | 0.0280 | 0.0420 | 0.0560 | <u>0.0700</u> | 0.0840 | 0.0980 | <u>0.1120</u> | <u>0.1260</u> | <u>0.1400</u> | SET | | Averages | -0.03 | -0.02 | -0.02 | 1.74 | 9.13 | 56.82 | 126.30 | 201.87 | 264.71 | 338.45 | 0.0000 | | Min | -0.40 | -0.40 | -0.40 | -0.40 | -0.40 | -0.30 | 73.80 | 159.60 | 214.90 | 275.00 | 0.0000 | | Max | 0.40 | 0.40 | 0.40 | 18.00 | 83.40 | 153.70 | 218.00 | 297.50 | 358.10 | 407.00 | 0.0000 | | St. Dev | 0.236 | 0.244 | 0.244 | 5.716 | 26.175 | 41.806 | 40.257 | 45.051 | 46.339 | 47.904 | 0.0000 | | Count | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | # **DATA SUMMARIES Continued** # **INSULATION RESISTANCE (IR):** | | Pin to Pin | | | | | | |----------|------------|---------|---------|--|--|--| | - | Mated | Unmated | Unmated | | | | | Minimum | UMPS/UMPT | UMPS | UMPT | | | | | Initial | 45000 | 45000 | 45000 | | | | | Thermal | 45000 | 45000 | 45000 | | | | | Humidity | 45000 | 45000 | 45000 | | | | | | Pin to | Pin to Closest Metallic Hardware | | | | | | | |----------|-----------|----------------------------------|---------|--|--|--|--|--| | | Mated | Unmated | Unmated | | | | | | | Minimum | UMPS/UMPT | UMPS | UMPT | | | | | | | Initial | 45000 | 45000 | 45000 | | | | | | | Thermal | 45000 | 45000 | 45000 | | | | | | | Humidity | 45000 | 45000 | 45000 | | | | | | # **DIELECTRIC WITHSTANDING VOLTAGE (DWV):** | Voltage Rating Su | mmary | |--------------------|-----------| | Minimum | UMPS/UMPT | | Break Down Voltage | 1843 | | Test Voltage | 1385 | | Working Voltage | 460 | | Pin to Pin | | | | | | |-----------------------------|--------|--|--|--|--| | Initial Test Voltage | Passed | | | | | | After Thermal Test Voltage | Passed | | | | | | After Humidity Test Voltage | Passed | | | | | | Pin to Closest Metallic Hardware | | | | | | |----------------------------------|--------|--|--|--|--| | Initial Test Voltage | Passed | | | | | | After Thermal Test Voltage | Passed | | | | | | After Humidity Test Voltage | Passed | | | | | Tracking Code: 1658301_Report_Rev_2 Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT Part description: UMPS / UMPT #### **DATA SUMMARIES Continued** # **LLCR Thermal Aging Group** - 1) A total of 40 points were measured. - 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing. - a. <= +0.33 mOhms: ------Stable b. +0.34 to +0.66 mOhms: ------Minor c. +0.67 to +1.00 mOhms: -------Acceptable d. +1.01 to +50.0 mOhms: ---------Marginal e. +50.1 to +1000 mOhms: ---------Unstable f. >+1000 mOhms: ----------Open Failure | | LLCR Measu | LLCR Measurement Summaries by Pin Type | | | | | | | |-------------------|------------|--|-------|-------|--|--|--|--| | Date | 8/2/2018 | 8/15/2018 | | | | | | | | Room Temp (Deg C) | 23 | 23 | | | | | | | | Rel Humidity (%) | 54 | 56 | | | | | | | | Technician | Peter Chen | Peter Chen | | | | | | | | mOhm values | Actual | Delta | Delta | Delta | | | | | | | Initial | Thermal | | | | | | | | | | Pin Type 1: Signa | l | | | | | | | Average | 0.72 | 0.01 | | | | | | | | St. Dev. | 0.06 | 0.02 | | | | | | | | Min | 0.59 | 0.00 | | | | | | | | Max | 0.83 | 0.10 | | | | | | | | Summary Count | 40 | 40 | | | | | | | | Total Count | 40 | 40 | | | | | | | | LLCR Delta Count by Category | | | | | | | | | | | |------------------------------|--------|----------------|-------------|-----------|--------------|-------|--|--|--|--| | | Stable | Minor | Acceptable | Marginal | Unstable | Open | | | | | | mOhms | <=0.33 | >0.33 & <=0.66 | >0.66 & <=1 | >1 & <=50 | >50 & <=1000 | >1000 | | | | | | Thermal | 40 | 0 | 0 | 0 | 0 | 0 | | | | | #### **DATA SUMMARIES Continued** ### **LLCR Mating/Unmating Durability Group** - 1). A total of 40 points were measured. - 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing. - a. <= +0.33 mOhms: -----Stable - b. +0.34 to +0.66 mOhms: ------Minor - c. +0.67 to +1.00 mOhms: ------Acceptable - d. +1.01 to +50.0 mOhms: ------Marginal - e. +50.1 to +1000 mOhms: ------Unstable - f. >+1000 mOhms:-----Open Failure | | LLCR | Measurement S | Summaries by Pi | п Туре | |-------------------|-----------|---------------|-----------------|-----------| | Date | 7/30/2018 | 8/1/2018 | 8/13/2018 | 8/29/2018 | | Room Temp (Deg C) | 23 | 23 | 23 | 23 | | Rel Humidity (%) | 54 | 54 | 54 | 54 | | | Peter | | | Peter | | Technician | Chen | Peter Chen | Peter Chen | Chen | | mOhm values | Actual | Delta | Delta | Delta | | | | 100 | | | | | Initial | Cycles | Therm Shck | Humidity | | | | Pin Type | 1: Signal | | | Average | 0.74 | 0.17 | 0.21 | 0.34 | | St. Dev. | 0.05 | 0.06 | 0.07 | 0.18 | | Min | 0.58 | 0.06 | 0.09 | 0.08 | | Max | 0.84 | 0.30 | 0.38 | 0.92 | | Summary Count | 40 | 40 | 40 | 40 | | Total Count | 40 | 40 | 40 | 40 | | LLCR Delta Count by Category | | | | | | | | | | |------------------------------|--------|----------------|-------------|-----------|--------------|-------|--|--|--| | | Stable | Minor | Acceptable | Marginal | Unstable | Open | | | | | mOhms | <=0.33 | >0.33 & <=0.66 | >0.66 & <=1 | >1 & <=50 | >50 & <=1000 | >1000 | | | | | 100 Cycles | 40 | 0 | 0 | 0 | 0 | 0 | | | | | Therm Shck | 36 | 4 | 0 | 0 | 0 | 0 | | | | | Humidity | 25 | 13 | 2 | 0 | 0 | 0 | | | | Tracking Code: 1658301_Report_Rev_2 Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT Part description: UMPS / UMPT # **DATA SUMMARIES Continued** #### **LLCR Gas Tight Group** - 2) A total of 40 points were measured. - 3) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 4) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 5) The following guidelines are used to categorize the changes in LLCR as a result from stressing. - a. <= +0.33 mOhms: ------Stable b. +0.37 to +0.66 mOhms: ------Minor c. +0.67 to +1.00 mOhms: ------Acceptable d. +1.01 to +50.0 mOhms: -------Marginal e. +50.1 to +1000 mOhms: -------Unstable - f. >+1000 mOhms:-----Open Failure | | LLCR Measurement Summaries by Pin Type | | | | |---------------------|--|-------------------------|-------|-------| | Date | 8/2/2018 | 8/3/2018 | | | | Room Temp (Deg C) | 23 | 23 | | | | Rel Humidity (%) | 54 | 54 | | | | Technician | Peter Chen | Peter Chen | | | | mOhm values | Actual | Delta | Delta | Delta | | | Initial | Acid Vapor | | | | | | | | | | | | Pin Type 1: | | | | Average | 0.74 | Pin Type 1: 0.07 | | | | Average
St. Dev. | 0.74
0.05 | | | | | • | | 0.07 | | | | St. Dev. | 0.05 | 0.07
0.07 | | | | St. Dev.
Min | 0.05
0.62 | 0.07
0.07
0.00 | | | | LLCR Delta Count by Category | | | | | | | |------------------------------|--------|----------------|-------------|-----------|--------------|-------| | | Stable | Minor | Acceptable | Marginal | Unstable | Open | | mOhms | <=0.33 | >0.33 & <=0.66 | >0.66 & <=1 | >1 & <=50 | >50 & <=1000 | >1000 | | Acid Vapor | 39 | 1 | 0 | 0 | 0 | 0 | | Tracking Code: 1658301_Report_Rev_2 | Part #: UMPS-05-03.5-T-VT-SM-WT/ UMPT-05-01.5-T-VT-SM-WT | |-------------------------------------|--| | | | ### **DATA SUMMARIES Continued** ### **LLCR Shock & Vibration Group** - 1) A total of 40 points were measured. - 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets. - 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition. - 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing. | g. | <= +0.33 mOhms:Stable | |----|---------------------------------| | h. | +0.34 to +0.66 mOhms:Minor | | i. | +0.67 to +1.00 mOhms:Acceptable | | j. | +1.01 to +50.0 mOhms:Marginal | | k. | +50.1 to +1000 mOhms:Unstable | | 1. | >+1000 mOhms:Open Failure | | | LLCR Measurement Summaries by Pin Type | | | | |-------------------|--|-----------|-------|-------| | Date | 8/28/2018 | 9/4/2018 | | | | Room Temp (Deg C) | 23 | 23 | | | | Rel Humidity (%) | 46 | 35 | | | | | Tony | Tony | | | | Technician | Wagoner | Wagoner | | | | mOhm values | Actual | Delta | Delta | Delta | | | Initial | Shock-Vib | | | | | Pin Type 1: Signal | | | | | Average | 0.78 | 0.03 | | | | St. Dev. | 0.04 | 0.04 | | | | Min | 0.70 | 0.00 | | | | Max | 0.89 | 0.19 | | | | Summary Count | 40 | 40 | | | | Total Count | 40 | 40 | | | | LLCR Delta Count by Category | | | | | | | |------------------------------|--------|----------------|-------------|-----------|--------------|-------| | | Stable | Minor | Acceptable | Marginal | Unstable | Open | | mOhms | <=0.33 | >0.33 & <=0.66 | >0.66 & <=1 | >1 & <=50 | >50 & <=1000 | >1000 | | Shock-Vib | 40 | 0 | 0 | 0 | 0 | 0 | #### **Nanosecond Event Detection:** | Shock and Vibration Event Detection Summary | | | | | |---|---------------------------|--|--|--| | Contacts tested | 16 | | | | | Test Condition | C, 100g's, 6ms, Half-Sine | | | | | Shock Events | 0 | | | | | Test Condition | V-B, 7.56 rms g | | | | | Vibration Events | 0 | | | | | Total Events | 0 | | | | # **EQUIPMENT AND CALIBRATION SCHEDULES** Equipment #: HZ-HPM-01 Description: Hipot Megommeter Manufacturer: Hipotronics Model: H306B-A Serial #: M9905004 Accuracy: 2 % Full Scale Accuracy ... Last Cal: 2018-4-27, Next Cal: 2019-4-26 Equipment #: HZ-MO-03 Description: Micro-ohmmeter Manufacturer: Keithley **Model:** 580 **Serial #:** 297288 **Accuracy:** Last Cal: 2018-8-06, Next Cal: 2019-8-05 **Equipment #:** HZ-TCT-01 **Description:** Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i **Serial #:** 08-1049-04 **Accuracy:** Last Cal: 2018-4-28, Next Cal: 2019-4-27 **Equipment #:** HZ-OV-01 **Description:** Oven **Manufacturer:** Huida **Model:** CS101-1E **Serial #:** CS101-1E-B **Accuracy:** Last Cal: 2017-12-14, Next Cal: 2018-12-13 **Equipment #: HZ-THC-01** **Description:** Humidity transmitter **Manufacturer:** Thermtron Model: HMM30C Serial #: D0240037 **Accuracy:** Last Cal: 2018-3-3, Next Cal: 2019-3-2 Equipment #: HZ-MO-01 Description: Micro-ohmmeter Manufacturer: Keithley **Model:** 2700 **Serial #:** 1199807 **Accuracy:** Last Cal: 2018-4-28, Next Cal: 2019-4-27 # **EQUIPMENT AND CALIBRATION SCHEDULES** Equipment #: HZ-PS-01 Description: Power Supply Manufacturer: Agilent **Model:** 6031A **Serial #:** MY41000982 **Accuracy:** Last Cal: 2018-4-28, Next Cal: 2019-4-27 **Equipment #:** HZ-TSC-01 **Description:** Thermal Shock transmitter Manufacturer: Keithley Model: 10-VT14994 Serial #: VTS-3-6-6-SC/AC **Accuracy:** Last Cal: 2017-11-1, Next Cal: 2018-11-1 **Equipment #:** SVC-01 **Description:** Shock & Vibration Table **Manufacturer:** Data Physics **Model:** LE-DSA-10-20K **Serial #:** 10037 **Accuracy:** Last Cal: 2017-11-31, Next Cal: 2018-11-31 Equipment #: ACLM-01 Description: Accelerometer Manufacturer: PCB Piezotronics **Model:** 352C03 **Serial #:** 115819 **Accuracy:** Last Cal: 2018-07-09, Next Cal: 2019-07-09 **Equipment #:** ED-03 **Description:** Event Detector **Manufacturer:** Analysis Tech **Model:** 32EHD **Serial #:** 1100604 Accuracy: Last Cal: 2018-06-04, Next Cal: 2019-06-04